3.18.54 \(\int \frac {1}{(d+e x)^{3/2} (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\)

Optimal. Leaf size=269 \[ -\frac {15 c^2 d^2 \sqrt {d+e x}}{4 \left (c d^2-a e^2\right )^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {15 c^2 d^2 \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{4 \left (c d^2-a e^2\right )^{7/2}}+\frac {5 c d}{4 \sqrt {d+e x} \left (c d^2-a e^2\right )^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac {1}{2 (d+e x)^{3/2} \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 269, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {672, 666, 660, 205} \begin {gather*} -\frac {15 c^2 d^2 \sqrt {d+e x}}{4 \left (c d^2-a e^2\right )^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {15 c^2 d^2 \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{4 \left (c d^2-a e^2\right )^{7/2}}+\frac {5 c d}{4 \sqrt {d+e x} \left (c d^2-a e^2\right )^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac {1}{2 (d+e x)^{3/2} \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)^(3/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

1/(2*(c*d^2 - a*e^2)*(d + e*x)^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (5*c*d)/(4*(c*d^2 - a*e^2)
^2*Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (15*c^2*d^2*Sqrt[d + e*x])/(4*(c*d^2 - a*e^2)^
3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (15*c^2*d^2*Sqrt[e]*ArcTan[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e
^2)*x + c*d*e*x^2])/(Sqrt[c*d^2 - a*e^2]*Sqrt[d + e*x])])/(4*(c*d^2 - a*e^2)^(7/2))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 660

Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(
2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 666

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((2*c*d - b*e)*(d +
e*x)^m*(a + b*x + c*x^2)^(p + 1))/(e*(p + 1)*(b^2 - 4*a*c)), x] - Dist[((2*c*d - b*e)*(m + 2*p + 2))/((p + 1)*
(b^2 - 4*a*c)), Int[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && LtQ[0, m, 1] && IntegerQ[2*p]

Rule 672

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(e*(d + e*x)^m*(a +
 b*x + c*x^2)^(p + 1))/((m + p + 1)*(2*c*d - b*e)), x] + Dist[(c*(m + 2*p + 2))/((m + p + 1)*(2*c*d - b*e)), I
nt[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ
[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {1}{(d+e x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx &=\frac {1}{2 \left (c d^2-a e^2\right ) (d+e x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {(5 c d) \int \frac {1}{\sqrt {d+e x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{4 \left (c d^2-a e^2\right )}\\ &=\frac {1}{2 \left (c d^2-a e^2\right ) (d+e x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {5 c d}{4 \left (c d^2-a e^2\right )^2 \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\left (15 c^2 d^2\right ) \int \frac {\sqrt {d+e x}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{8 \left (c d^2-a e^2\right )^2}\\ &=\frac {1}{2 \left (c d^2-a e^2\right ) (d+e x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {5 c d}{4 \left (c d^2-a e^2\right )^2 \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {15 c^2 d^2 \sqrt {d+e x}}{4 \left (c d^2-a e^2\right )^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (15 c^2 d^2 e\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 \left (c d^2-a e^2\right )^3}\\ &=\frac {1}{2 \left (c d^2-a e^2\right ) (d+e x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {5 c d}{4 \left (c d^2-a e^2\right )^2 \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {15 c^2 d^2 \sqrt {d+e x}}{4 \left (c d^2-a e^2\right )^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (15 c^2 d^2 e^2\right ) \operatorname {Subst}\left (\int \frac {1}{2 c d^2 e-e \left (c d^2+a e^2\right )+e^2 x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{4 \left (c d^2-a e^2\right )^3}\\ &=\frac {1}{2 \left (c d^2-a e^2\right ) (d+e x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {5 c d}{4 \left (c d^2-a e^2\right )^2 \sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {15 c^2 d^2 \sqrt {d+e x}}{4 \left (c d^2-a e^2\right )^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {15 c^2 d^2 \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{4 \left (c d^2-a e^2\right )^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 81, normalized size = 0.30 \begin {gather*} -\frac {2 c^2 d^2 \sqrt {d+e x} \, _2F_1\left (-\frac {1}{2},3;\frac {1}{2};\frac {e (a e+c d x)}{a e^2-c d^2}\right )}{\left (c d^2-a e^2\right )^3 \sqrt {(d+e x) (a e+c d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)^(3/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-2*c^2*d^2*Sqrt[d + e*x]*Hypergeometric2F1[-1/2, 3, 1/2, (e*(a*e + c*d*x))/(-(c*d^2) + a*e^2)])/((c*d^2 - a*e
^2)^3*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 180.02, size = 0, normalized size = 0.00 \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[1/((d + e*x)^(3/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [B]  time = 0.44, size = 1140, normalized size = 4.24 \begin {gather*} \left [\frac {15 \, {\left (c^{3} d^{3} e^{3} x^{4} + a c^{2} d^{5} e + {\left (3 \, c^{3} d^{4} e^{2} + a c^{2} d^{2} e^{4}\right )} x^{3} + 3 \, {\left (c^{3} d^{5} e + a c^{2} d^{3} e^{3}\right )} x^{2} + {\left (c^{3} d^{6} + 3 \, a c^{2} d^{4} e^{2}\right )} x\right )} \sqrt {-\frac {e}{c d^{2} - a e^{2}}} \log \left (-\frac {c d e^{2} x^{2} + 2 \, a e^{3} x - c d^{3} + 2 \, a d e^{2} - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d^{2} - a e^{2}\right )} \sqrt {e x + d} \sqrt {-\frac {e}{c d^{2} - a e^{2}}}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) - 2 \, {\left (15 \, c^{2} d^{2} e^{2} x^{2} + 8 \, c^{2} d^{4} + 9 \, a c d^{2} e^{2} - 2 \, a^{2} e^{4} + 5 \, {\left (5 \, c^{2} d^{3} e + a c d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{8 \, {\left (a c^{3} d^{9} e - 3 \, a^{2} c^{2} d^{7} e^{3} + 3 \, a^{3} c d^{5} e^{5} - a^{4} d^{3} e^{7} + {\left (c^{4} d^{7} e^{3} - 3 \, a c^{3} d^{5} e^{5} + 3 \, a^{2} c^{2} d^{3} e^{7} - a^{3} c d e^{9}\right )} x^{4} + {\left (3 \, c^{4} d^{8} e^{2} - 8 \, a c^{3} d^{6} e^{4} + 6 \, a^{2} c^{2} d^{4} e^{6} - a^{4} e^{10}\right )} x^{3} + 3 \, {\left (c^{4} d^{9} e - 2 \, a c^{3} d^{7} e^{3} + 2 \, a^{3} c d^{3} e^{7} - a^{4} d e^{9}\right )} x^{2} + {\left (c^{4} d^{10} - 6 \, a^{2} c^{2} d^{6} e^{4} + 8 \, a^{3} c d^{4} e^{6} - 3 \, a^{4} d^{2} e^{8}\right )} x\right )}}, -\frac {15 \, {\left (c^{3} d^{3} e^{3} x^{4} + a c^{2} d^{5} e + {\left (3 \, c^{3} d^{4} e^{2} + a c^{2} d^{2} e^{4}\right )} x^{3} + 3 \, {\left (c^{3} d^{5} e + a c^{2} d^{3} e^{3}\right )} x^{2} + {\left (c^{3} d^{6} + 3 \, a c^{2} d^{4} e^{2}\right )} x\right )} \sqrt {\frac {e}{c d^{2} - a e^{2}}} \arctan \left (-\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d^{2} - a e^{2}\right )} \sqrt {e x + d} \sqrt {\frac {e}{c d^{2} - a e^{2}}}}{c d e^{2} x^{2} + a d e^{2} + {\left (c d^{2} e + a e^{3}\right )} x}\right ) + {\left (15 \, c^{2} d^{2} e^{2} x^{2} + 8 \, c^{2} d^{4} + 9 \, a c d^{2} e^{2} - 2 \, a^{2} e^{4} + 5 \, {\left (5 \, c^{2} d^{3} e + a c d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{4 \, {\left (a c^{3} d^{9} e - 3 \, a^{2} c^{2} d^{7} e^{3} + 3 \, a^{3} c d^{5} e^{5} - a^{4} d^{3} e^{7} + {\left (c^{4} d^{7} e^{3} - 3 \, a c^{3} d^{5} e^{5} + 3 \, a^{2} c^{2} d^{3} e^{7} - a^{3} c d e^{9}\right )} x^{4} + {\left (3 \, c^{4} d^{8} e^{2} - 8 \, a c^{3} d^{6} e^{4} + 6 \, a^{2} c^{2} d^{4} e^{6} - a^{4} e^{10}\right )} x^{3} + 3 \, {\left (c^{4} d^{9} e - 2 \, a c^{3} d^{7} e^{3} + 2 \, a^{3} c d^{3} e^{7} - a^{4} d e^{9}\right )} x^{2} + {\left (c^{4} d^{10} - 6 \, a^{2} c^{2} d^{6} e^{4} + 8 \, a^{3} c d^{4} e^{6} - 3 \, a^{4} d^{2} e^{8}\right )} x\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

[1/8*(15*(c^3*d^3*e^3*x^4 + a*c^2*d^5*e + (3*c^3*d^4*e^2 + a*c^2*d^2*e^4)*x^3 + 3*(c^3*d^5*e + a*c^2*d^3*e^3)*
x^2 + (c^3*d^6 + 3*a*c^2*d^4*e^2)*x)*sqrt(-e/(c*d^2 - a*e^2))*log(-(c*d*e^2*x^2 + 2*a*e^3*x - c*d^3 + 2*a*d*e^
2 - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d^2 - a*e^2)*sqrt(e*x + d)*sqrt(-e/(c*d^2 - a*e^2)))/(e^2
*x^2 + 2*d*e*x + d^2)) - 2*(15*c^2*d^2*e^2*x^2 + 8*c^2*d^4 + 9*a*c*d^2*e^2 - 2*a^2*e^4 + 5*(5*c^2*d^3*e + a*c*
d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(a*c^3*d^9*e - 3*a^2*c^2*d^7*e^3 + 3*a^3*
c*d^5*e^5 - a^4*d^3*e^7 + (c^4*d^7*e^3 - 3*a*c^3*d^5*e^5 + 3*a^2*c^2*d^3*e^7 - a^3*c*d*e^9)*x^4 + (3*c^4*d^8*e
^2 - 8*a*c^3*d^6*e^4 + 6*a^2*c^2*d^4*e^6 - a^4*e^10)*x^3 + 3*(c^4*d^9*e - 2*a*c^3*d^7*e^3 + 2*a^3*c*d^3*e^7 -
a^4*d*e^9)*x^2 + (c^4*d^10 - 6*a^2*c^2*d^6*e^4 + 8*a^3*c*d^4*e^6 - 3*a^4*d^2*e^8)*x), -1/4*(15*(c^3*d^3*e^3*x^
4 + a*c^2*d^5*e + (3*c^3*d^4*e^2 + a*c^2*d^2*e^4)*x^3 + 3*(c^3*d^5*e + a*c^2*d^3*e^3)*x^2 + (c^3*d^6 + 3*a*c^2
*d^4*e^2)*x)*sqrt(e/(c*d^2 - a*e^2))*arctan(-sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d^2 - a*e^2)*sqrt(
e*x + d)*sqrt(e/(c*d^2 - a*e^2))/(c*d*e^2*x^2 + a*d*e^2 + (c*d^2*e + a*e^3)*x)) + (15*c^2*d^2*e^2*x^2 + 8*c^2*
d^4 + 9*a*c*d^2*e^2 - 2*a^2*e^4 + 5*(5*c^2*d^3*e + a*c*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*s
qrt(e*x + d))/(a*c^3*d^9*e - 3*a^2*c^2*d^7*e^3 + 3*a^3*c*d^5*e^5 - a^4*d^3*e^7 + (c^4*d^7*e^3 - 3*a*c^3*d^5*e^
5 + 3*a^2*c^2*d^3*e^7 - a^3*c*d*e^9)*x^4 + (3*c^4*d^8*e^2 - 8*a*c^3*d^6*e^4 + 6*a^2*c^2*d^4*e^6 - a^4*e^10)*x^
3 + 3*(c^4*d^9*e - 2*a*c^3*d^7*e^3 + 2*a^3*c*d^3*e^7 - a^4*d*e^9)*x^2 + (c^4*d^10 - 6*a^2*c^2*d^6*e^4 + 8*a^3*
c*d^4*e^6 - 3*a^4*d^2*e^8)*x)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choice was
done assuming [a,c,d,exp(1),exp(2)]=[-23,67,97,57,86]Warning, need to choose a branch for the root of a polyno
mial with parameters. This might be wrong.The choice was done assuming [a,c,d,exp(1),exp(2)]=[-4,-41,-80,-82,2
0]Evaluation time: 34.57Not invertible Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.08, size = 384, normalized size = 1.43 \begin {gather*} -\frac {\sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}\, \left (15 \sqrt {c d x +a e}\, c^{2} d^{2} e^{3} x^{2} \arctanh \left (\frac {\sqrt {c d x +a e}\, e}{\sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}}\right )+30 \sqrt {c d x +a e}\, c^{2} d^{3} e^{2} x \arctanh \left (\frac {\sqrt {c d x +a e}\, e}{\sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}}\right )+15 \sqrt {c d x +a e}\, c^{2} d^{4} e \arctanh \left (\frac {\sqrt {c d x +a e}\, e}{\sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}}\right )-15 \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, c^{2} d^{2} e^{2} x^{2}-5 \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, a c d \,e^{3} x -25 \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, c^{2} d^{3} e x +2 \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, a^{2} e^{4}-9 \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, a c \,d^{2} e^{2}-8 \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, c^{2} d^{4}\right )}{4 \left (e x +d \right )^{\frac {5}{2}} \left (c d x +a e \right ) \left (a \,e^{2}-c \,d^{2}\right )^{3} \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(3/2)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2),x)

[Out]

-1/4/(e*x+d)^(5/2)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(15*(c*d*x+a*e)^(1/2)*arctanh((c*d*x+a*e)^(1/2)/((a
*e^2-c*d^2)*e)^(1/2)*e)*x^2*c^2*d^2*e^3+30*(c*d*x+a*e)^(1/2)*arctanh((c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2)
*e)*x*c^2*d^3*e^2+15*(c*d*x+a*e)^(1/2)*arctanh((c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2)*e)*c^2*d^4*e-15*((a*e
^2-c*d^2)*e)^(1/2)*x^2*c^2*d^2*e^2-5*((a*e^2-c*d^2)*e)^(1/2)*x*a*c*d*e^3-25*((a*e^2-c*d^2)*e)^(1/2)*x*c^2*d^3*
e+2*((a*e^2-c*d^2)*e)^(1/2)*a^2*e^4-9*((a*e^2-c*d^2)*e)^(1/2)*a*c*d^2*e^2-8*((a*e^2-c*d^2)*e)^(1/2)*c^2*d^4)/(
c*d*x+a*e)/(a*e^2-c*d^2)^3/((a*e^2-c*d^2)*e)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}} {\left (e x + d\right )}^{\frac {3}{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*(e*x + d)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{{\left (d+e\,x\right )}^{3/2}\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d + e*x)^(3/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)),x)

[Out]

int(1/((d + e*x)^(3/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}} \left (d + e x\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(3/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral(1/(((d + e*x)*(a*e + c*d*x))**(3/2)*(d + e*x)**(3/2)), x)

________________________________________________________________________________________